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Multitemporal Image Analysis

 Multitemporal image analysis: aims at analyzing two or more remote sensing images acquired on the
same geographical area at different times for identifying changes or other kinds of relevant temporal
patterns occurred between the considered acquisition dates.

 Several multitemporal problems exist:
• Binary change detection.
• Multiclass change detection.
• Trend analysis in long time series.
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Multitemporal Analysis Block Scheme & Products
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Multitemporal Images Co-registration

 In multitemporal image processing, poor co-registration is a source of errors and can be modeled as a

noisy component.

 Registration noise statistical properties have been modeled by accounting for its multiscale behaviors in

the difference image domain.
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Multitemporal Images Co-registration

Registration noise information can be used to improve multitemporal analysis by:

 Removing noisy pixels in post-processing [1];

 Involving registration noise in the co-registration step [2]-[4];

 Other more complex paradigms.
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Hyperspectral Multitemporal Data Analysis: Challenges

 Multitemporal hyperspectral data are highly sensitive to detailed variations of the spectral signatures of

land covers thus when multitemporal images are considered subtle changes/temporal variations can be

detected.

 The definition of the concept of change in hyperspectral (HS) images is not clear in the literature and

represents the first challenge.

 Only few approaches to multitemporal in hyperspectral images exist in the literature.

 State-of-the-art methods are mainly developed for multispectral images and do not explicitly handle the

challenging issues that may arise due to the properties of hyperspectral images like:

• the high dimensionality;

• the presence of noisy channels and redundant information;

• the increase of computational cost;

• the increase of the possible number of changes;

• the high complex change representation and identification;

• the presence of changes at sub-pixel level (i.e., mixed pixels).
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Hyperspectral Change Concept
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Hyperspectral Information Visualization & Management 
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Hyperspectral Information Visualization & Management

10

Multitemporal false

color composite

R 823.65nm
G 721.90nm
B 620.15nm

2004 2007

Proposed method Standard clustering

Francesca Bovolo



Unmixing in Hyperspectral Multitemporal Images 
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Unmixing in Hyperspectral Multitemporal Images
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Land-Cover Map Updating
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Applications

Multitemporal analysis of hyperspectral images can be relevant in many applications, among the others

those where small intensity changes and/or changes slow in time may strongly benefit:

 Forest analysis (e.g., forest disturbance, forest fires, forest classification, biomass analysis);

 Precision agriculture (e.g., crop mapping, crop rotation, crop stress analysis, fertilization);

 Water quality (e.g., chlorophyll monitoring, alga bloom);

 Vegetation (e.g., desertification, deforestation, vegetation stress);

 Etc.
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Conclusions

 PRISMA will guarantee regular multitemporal hyperspectral images.

 Several activities have been developed in multitemporal image processing in multispectral images

(satellite and airborne).

 Automatic supervised/unsupervised methods are available including:

• Multitemporal images preprocessing.
• Binary change detection.
• Multiclass change detection.
• Trend analysis in long time series.

 These methods can been adapted to the characteristics of PRISMA hyperspectral multitemporal images

to generate new products.
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